Investigation on the structure of lipschitz-free banach space
dc.contributor.author | Gowele, Jesline Elieza | |
dc.date.accessioned | 2020-05-22T06:45:00Z | |
dc.date.available | 2020-05-22T06:45:00Z | |
dc.date.issued | 2018 | |
dc.description | Available in printed form, East Africana Collection, Dr. Wilbert Chagula Library, Class mark (THS EAF QA323.T34G68 ) | en_US |
dc.description.abstract | In this dissertation we showed that, the Lipschitz-free space over a quasi-ultrametric space has monotone Schauder basis. Also we showed that, in a quasi-metric space, l_∞is linearly isomorphic to a subspace of the space of Lipschitz functions. Lastly, we showed that, Lipschitz-free space over a sequentially metric space contains a 1-complemented subspace isometric to l_1. | en_US |
dc.identifier.citation | Gowele, J.E (2018) Investigation on the structure of lipschitz-free banach space.Master dissertation, University of Dar es Salaam, Dar es Salaam. | en_US |
dc.identifier.uri | http://41.86.178.5:8080/xmlui/handle/123456789/11424 | |
dc.language.iso | en | en_US |
dc.publisher | University of Dar es Salaam | en_US |
dc.subject | Lipschitz space | en_US |
dc.subject | Function space | en_US |
dc.subject | Besov space | en_US |
dc.subject | Functionals | en_US |
dc.title | Investigation on the structure of lipschitz-free banach space | en_US |
dc.type | Thesis | en_US |